142. Some Heterocyclic N-Oxides.

By P. Mamalis and V. Petrow.
Although the preparation of some phenanthridine N -oxides has been accomplished, attempts to obtain the " N-oxide" analogue of Dimidium bromide (II) have proved unsuccessful.

By the action of phosphorus oxychloride on 9 -phenylphenanthridine N -oxide, 3-chloro-9phenylphenanthridine has been obtained. 9-Methylphenanthridine N -oxide similarly gave 9 -chloromethylphenanthridine together with what was probably a 3 -chloro- 9 -methylphenanthridine.

In 1941 McIlwain (Nature, 148, 628) reported that iodinin, the pigment of Chromobacterium iodinum, showed marked antibacterial action on a number of organisms. Chemical work on its structure revealed that the compound was a dihydroxyphenazine di- N-oxide, a result which led McIlwain (J., 1943, 322) to the synthesis of a number of phenazine and quinoxaline di- N oxides which showed varying degrees of antibacterial action. In 1943 White and Hill (J. Bact., $1943,45,433$) reported the isolation of the antibiotic " aspergillic acid" which possessed an antibacterial range greater than that of penicillin (see Glister, Nature, 1941, 148, 470) and
proved to be a hydroxypyrazine N-oxide (see Newbold and Spring, $J ., 1947,372$). The existence of N-oxide residues in at least two naturally occuring antibacterial agents appeared significant, particularly as the corresponding "deoxido"-compounds were without biological interest. We therefore undertook the preparation of some phenanthridine N-oxides (I a) for study as antibacterial agents and, as N-oxides bear an electronic resemblance to quaternary salt (e.g., II), for examination as trypanocides. In particular, we wished to prepare the " N-oxide" analogue of the effective trypanocide, Dimidium bromide (II) (see Walls, J., 1945, 294). Some new quinoline and quinoxaline N -oxides were also prepared, as we required a range of compounds which could function as mild oxidising agents for chemotherapeutic studies employing the anaerobic organism Entamoeba histolytica.

(I.)

(Ia.)

(II.)

Conversion of phenanthridine itself, and of its 9 -methyl and 9 -ethyl derivatives, into the corresponding N -oxides was smoothly achieved by employing perphthalic acid. Peracetic acid, however, proved to be the reagent of choice for the preparation of the 9 -arylphenanthridine N-oxides, which generally differed from their 9 -alkyl analogues in failing to liberate iodine from potassium iodide under the experimental conditions specified by McIlwain (J., 1943, 342) for this test.

The mononitrophenylphenanthridines were converted into their N -oxides with somewhat greater difficulty and required longer reaction periods with peracetic acid. This result is probably due to the electron-attracting effect of the nitro-group on the free electron pair present on the ring nitrogen and available for oxide formation. Similar difficulties were experienced with the dinitrophenylphenanthridines. Although 3-nitro-9-p-nitrophenylphenanthridine N -oxide was obtained from the corresponding dinitro-compound in low yield, all attempts to prepare 2: 7-dinitro-9-phenylphenanthridine N-oxide for conversion into the Dimidium bromide analogue were unsuccessful.

Reduction of the nitro-9-phenylphenanthridine N-oxides with stannous chloride in hydrochloric acid solution furnished the corresponding amino-9-phenylphenanthridine N-oxides. Reduction of 3 -nitro- $9-p$-nitrophenylphenanthridine N-oxide, on the other hand, invariably resulted in loss of the oxido-grouping and formation of 3 -amino- $9-p$-aminophenylphenanthridine. Limited success attended efforts at the direct oxidation of 3-diacetylamino-9-p-diacetylaminophenylphenanthridine, wherein the corresponding N -oxide was obtained in very low yield. Attempts to extend this reaction to 7-diacetylamino-9-p-diacetylaminophenyl-, 2:7-bisdiacetylamino-9-phenyl-, and 2:7-dicarbethoxyamino-9-phenyl-phenanthridine proved unsuccessful, however, and further work on the " N-oxide " analogue of Dimidium bromide (II) was abandoned.

9-4'-Pyridylphenanthridine, prepared by ring closure of $2: 4^{\prime}$-picolinamidodiphenyl, formed a homogeneous monoxide on treatment with $1 \cdot 1$ equivalents of perphthalic acid. The constitution of a $9-\mathbf{4}^{\prime}$-pyridylphenanthridine 1^{\prime}-oxide has been assigned to this compound from analogy with related work on the monoquaternation of $9-3^{\prime}$-pyridylphenanthridine (Petrow and Wragg, J., 1947, 1410) and on general theoretical grounds. Reaction with excess of perphthalic acid led to the formation of the corresponding dioxide. Attempts to convert 9-(5-nitro-2-furyl)phenanthridine into its oxide were unsuccessful.

The reaction of phenanthridine N-oxide with phosphorus oxychloride followed the pattern established for similar compounds (see, e.g., Baxter, Newbold, and Spring, J., 1948, 1859), 9 -chlorophenanthridine being formed. When 9 -phenylphenanthridine N-oxide was treated in the same way, however, a chloro-9-phenylphenanthridine was obtained, identical with authentic 3-chloro-9-phenylphenanthridine prepared by the Sandmeyer reaction from the corresponding amino-compound. When 9 -methylphenanthridine N-oxide was treated with phosphorus oxychloride, two halogenated products were obtained. One of these was identified with 9 -chloromethylphenanthridine previously described by Morgan and Walls ($J ., 1931,2447$). The other product has, by analogy with its phenyl analogue, been assigned the constitution of a 3-chloro-9-methylphenanthridine.

Experimental.

(M. p.s are uncorrected. Microanalyses are by the Analytical Department, The British Drug Houses Ltd., and by Drs. Weiler and Strauss, Oxford.)

Substituted 2-Benzamidodiphenyls.-The acid chloride ($0 \cdot 1 \mathrm{~mol}$.) (prepared from the acid and thionyl chloride) was added in portions to a solution of 2 -aminodiphenyl ($0 \cdot 1$ mol.) in pyridine ($15-20 \mathrm{ml}$.), and the mixture heated on the steam-bath for 2 hours to complete the reaction. Addition of dilute hydrochloric acid usually precipitated the amide as a solid, which was collected, washed, and crystallised from alcohol or alcohol-light petroleum. Occasionally, preliminary vacuum-distillation was required before the amide could be obtained as a solid. The compounds listed in Table I were thus prepared. The yields are based on the acid used.

5-Carbethoxyamino-2-acetamidodiphenyl, prepared by reduction of 5 -nitro- 2 -acetamidodiphenyl followed by carbethoxylation, formed small pale-cream needles, m. p. $127-128^{\circ}$ (77%) (Found : C, $68 \cdot 4 ; \mathrm{H}, 6 \cdot 0 . \quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2}$ requires $\mathrm{C}, 68 \cdot 4 ; \mathrm{H}, 6.1 \%$, from benzene-light petroleum.

4'-Carbethoxy-2-acetamidodiphenyl, prepared as for the foregoing compound, formed (91%) silvery leaflets, m. p. 160-161 ${ }^{\circ}$ (cf. Walls, $J ., 1947,67$).

2 -Nitro-4 : 4'-dibenzamidodiphenyl.- 2 -Nitrobenzidine (23.6 g .) in warm pyridine (30 ml .) was treated with benzoyl chloride (30 g .) in portions. After 30 minutes on the water-bath the product was isolated and purified from pyridine-light petroleum, to give pale yellow prisms, m. p. 290-291 ${ }^{\circ}$ (Found: C, $71.7 ; \mathrm{H}, 4 \cdot 5 . \quad \mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}_{3}$ requires $\mathrm{C}, 71 \cdot 4 ; \mathrm{H}, 4.4 \%$, in nearly quantitative yield.

2-Amino-4: 4'-dibenzamidodiphenyl.-Finely powdered 2 -nitro-4: 4'-dibenzamidodiphenyl (16.7 g.) was stirred with concentrated hydrochloric acid (83 ml .) containing a little alcohol to prevent frothing, and a solution of stannous chloride (47 g .) in concentrated hydrochloric acid (50 ml .) added. After 2 hours on the water-bath the mixture was poured, with stirring, into excess of sodium hydroxide solution (30%), and the precipitated solids extracted with boiling pyridine. Evaporation of the extract under reduced pressure, followed by crystallisation of the residue (12.0 g . ; m. p. $255-258^{\circ}$) from aqueous pyridine, gave 2-amino-4:4'dibenzamidodiphenyl, buff-coloured prisms, m. p 270 (Found: C, 76.9 ; $\mathrm{H}, 5 \cdot 2 . \quad \mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}_{3}$ requires $\mathrm{C}, 76 \cdot 7 ; \mathrm{H}, 5 \cdot 2 \%$).

4:4'-Dicarbethoxyamino-2-dimethylaminodiphenyl.-A well-stirred solution of 2-amino-4:4'-dicarbethoxyaminodiphenyl (13 g .) in water (50 ml .) at 80° was treated in portions with aqueous sodium hydroxide (19 g . in 28 ml . of water) and methyl sulphate (35 g .) , added alternately so that the mixture remained alkaline. After a further 30 minutes' heating, the product was collected, heated with acetic anhydride (20 ml .) for 10 minutes on the water-bath, and poured into dilute sulphuric acid (20 ml . acid in 300 ml . of water), and the mixture was filtered while hot. The filtrate was made alkaline, giving $4: 4^{\prime}$-dicarbethoxyamino-2-dimethylaminodiphenyl, prismatic needles ($6 \cdot 7 \mathrm{~g}$.), m. p. $171-172^{\circ}$ (Found: $\mathrm{C}, 63 \cdot 7 ; \mathrm{H}, 7 \cdot 5 . \quad \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~N}_{3}, \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ requires $\mathrm{C}, 63 \cdot 3 ; \mathrm{H}, 7.5 \%$), from ethanol.

2 -Benzamido-4'-chlorosulphonyldiphenyl.-2-Benzamidodiphenyl (21.2 g .) was added in portions with stirring to chlorosulphonic acid $\left(42 \cdot 4 \mathrm{~g}\right.$.) at 10°. The mixture was then heated at 60° for 2 hours and, after cooling, poured on ice. The sticky product was dissolved in chloroform and precipitated with light petroleum, giving 2-benzamido-4'-chlorosulphonyldiphenyl, needles ($12 \cdot 2 \mathrm{~g}$.), m. p. 162 - 163° (Found : $\mathrm{C}, 62 \cdot 1 ; \mathrm{H}, 3 \cdot 9 ; \mathrm{Cl}, 9 \cdot 9 . \quad \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{ClNS}$ requires $\mathrm{C}, 61.4 ; \mathrm{H}, 3 \cdot 8 ; \mathrm{Cl}, 9 \cdot 5 \%$), from benzene (cf. B.PP. 597,809, 597,810 for orientation).

2-Benzamido-4'-2'-pyridylsulphamyldiphenyl, prepared from the above compound, formed prisms. m. p. 223°, from ethoxyethyl alcohol (Found: $\mathrm{C}, 66.5 ; \mathrm{H}, 4.8 . \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}_{3} \mathrm{~S}$ requires $\mathrm{C}, 67.1$; H , $\mathbf{4 . 5} \%$). The p-chlorophenylsulphamyl derivative separated from ethoxyethyl alcohol in small leaflets, m. p. 239° (Found: $\mathrm{C}, 64.9$; $\mathrm{H}, 4.5 . \mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{SCl}$ requires $\mathrm{C}, 64.9 ; \mathrm{H}, 4 \cdot 1 \%$). The sulphonomorpholide formed needles, m. p. $161-163^{\circ}{ }^{\circ}$ (Found : $\mathrm{C}, 65 \cdot 3 ; \mathrm{H}, 5 \cdot 3 . \quad \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{C}, 65 \cdot 4$; $\mathrm{H}, 5 \cdot 3 \%$), from aqueous ethoxyethyl alcohol. The sulphonopiperidide formed needles, m. p. $102-104{ }^{\circ}$ (Found: $\mathrm{N}, 6 \cdot 6 . \quad \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{N}, 6 \cdot 7 \%$), from ethanol.

The p-nitrophenylsulphamyl derivative formed pale yellow leaflets, m. p. 247° (Found : C, 63.3; $\mathrm{H}, 3 \cdot 8 . \quad \mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{~S}$ requires $\mathrm{C}, 63 \cdot 4 ; \mathrm{H}, 4.0 \%$), from ethoxyethyl alcohol.

2-isoNicotinamidodiphenyl.-isoNicotinic acid (30 g.), prepared (56\% yield) by the method of Linnell and Vyas (Quart. J. Pharm., 1947, 20, 120), was heated under reflux with thionyl chloride (85 ml .) for 6 hours. Unchanged thionyl chloride was removed under reduced pressure, and the residue evaporated with benzene. The isonicotinoyl chloride hydrochloride in gently refluxing chlorobenzene (320 ml .) was treated in portions with 2 -aminodiphenyl (40 g .) in chlorobenzene (85 ml .). Heating was. continued for a further 30 minutes, and the mixture was cooled, the chlorobenzene decanted off, and the semi-solid residue washed by decantation with ether. The product was dissolved in hot methyl alcohol (ca. 400 ml .), the base ($42.5 \mathrm{~g} . ; \mathrm{m} . \mathrm{p} .107-111^{\circ}$) precipitated with aqueous ammonia, and the mixture cooled. $\quad 2$-iso Nicotinamidodiphenyl formed needles, m. p. $113 \cdot 5^{\circ}$ (Found : C, 79.0; H, 5•3. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ON}_{2}$ requires $\mathrm{C}, 78 \cdot 8 ; \mathrm{H}, 5 \cdot 1 \%$), from aqueous methanol.

The compounds listed in Table II were prepared in a similar way.
4'-Chloro-2-benzamidodiphenyl.-The method of Bradshaw and Wissow (J. Amer. Chem. Soc., 1946, 68, 405) was modified as follows: 4^{\prime}-Chloro-2-nitrodiphenyl ($11 \cdot 2 \mathrm{~g}$.), ethanol (45 ml .), water (12 ml .), reduced iron (15 g .), and a few drops of concentrated hydrochloric acid were heated under reflux on the water-bath for 1 hour. The mixture was then made just alkaline with aqueous ammonia and filtered hot. Extraction of the solids with hot ethanol gave an oil from which 4^{\prime}-chloro-2-benzamidodiphenyl was obtained, on benzoylation, as needles (10.6 g .), m. p. 167-169 ${ }^{\circ}$, from ethanol.

5-Chloro-2-acetamidodiphenyl.-The following improved method was used: 2-acetamidodiphenyl $(10.6 \mathrm{~g}$.) and fused sodium acetate (12.3 g .) in glacial acetic acid (45 ml .) on the water-bath were treated with a stream of chlorine until 3.5 g . had been absorbed. Heating was continued for a further 30 minutes and the mixture was then diluted with water and extracted with chloroform. The product was distilled under reduced pressure, the fraction, b. p. $170-200^{\circ} / 0.05 \mathrm{~mm}$., yielding 5-chloro-2acetamidodiphenyl, m. p. $120-121^{\circ}$ (Found: $\mathrm{C}, 68 \cdot 9 ; \mathrm{H}, 5 \cdot 0$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ONCl}: \mathrm{C}, 68 \cdot 4 ; \mathrm{H}$, 4.9%), on crystallisation from alcohol-light petroleum (cf. Scarborough and Waters, $J ., 1927,93$).

2-(p-Aminobenzamido)diphenyl, prepared by reduction of the corresponding nitro-compound with reduced iron, separated (87%) from ethanol in cubes, $\mathrm{m} . \mathrm{p} .144-145^{\circ}$ (Found : C, 79.3 ; H, 5.7 ; N, 9.5 $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ON}_{2}$ requires $\left.\mathrm{C}, 79 \cdot 1 ; \mathrm{H}, 5 \cdot 6 ; \mathrm{N}, 9 \cdot 7 \%\right)$. It was converted into 2 -(p -carbethoxyaminobenzamido)diphenyl, needles, m. p. 166-167 ${ }^{\circ}$ (Found: $\mathrm{C}, 73 \cdot 7$; $\mathrm{H}, 6 \cdot 0 . \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2}$ requires $\mathrm{C}, 73 \cdot 3$; $\mathrm{H}, 5 \cdot 6 \%$), from ethanol, by the method of Lesslie and Turner (J., 1943, 1588).

9-Subsituted Phenanthridines.-The amidodiphenyl (1 part), phosphorus oxychloride (2 parts), and nitrobenzene (3 parts) were heated under reflux in an oil-bath for $1 \frac{1}{2}-2 \frac{1}{2}$ hours. The reaction mixture was poured on excess of ice-sodium hydroxide solution, and the nitrobenzene removed in steam. After cooling, the separated solids were collected, washed, and purified by crystallisation. The compounds listed in Table III were thus prepared.

9-4'-Pyridylphenanthridine dihydrochloride formed yellow prisms, m. p. 235° (decomp.) (Found : $\mathrm{C}, 65 \cdot 3 ; \mathrm{H}, 4.4 . \quad \mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2}, 2 \mathrm{HCl}$ requires $\mathrm{C}, 65.7 ; \mathrm{H}, 4.3 \%$), from ethanol.

3-Chloro-9-phenylphenanthridine.-3-Amino-9-phenylphenanthridine ($5 \cdot 0 \mathrm{~g}$.), dissolved in concentrated hydrochloric acid (7 ml .) and water (3 ml .), was diazotised at 0° with sodium nitrite (1.4 g .) dissolved in a little water. The diazonium solution was then rapidly added to cuprous chloride solution [prepared from cupric sulphate (6.2 g .), sodium chloride (1.75 g .), and water (20 ml .; saturated with SO_{2}), the resulting cuprous chloride being dissolved in hydrochloric acid (12 ml.$\left.\left.\right)\right]$. After being kept overnight, the precipitated solids were collected and extracted with sodium hydroxide solution, and the insoluble residue was crystallised from ethanol. 3-Chloro-9-phenylphenanthridine formed yellow leaflets (1.3 g .), m. p. 141-142 ${ }^{\circ}$ (Found: C, $79 \cdot 0$; $\mathrm{H}, 4 \cdot 4 . \mathrm{C}_{19} \mathrm{H}_{12} \mathrm{NCl}$ requires C, 78.7 ; $\mathrm{H}, 4 \cdot 3 \%$).

7-Amino-9-phenylphenanthridine.-Finely powdered 7 -nitro- 9 -phenylphenanthridine (14.5 g .) was stirred with concentrated hydrochloric acid (60 ml .) while a solution of stannous chloride (40 g .) in hydrochloric acid (43 ml .) was added. After 3 hours on the water-bath the cooled mixture was filtered, the yellow stannichloride dissolved in water, and the solution basified. Hot ethoxyethyl alcohol extracted 7 -amino-9-phenylphenanthridine, yellow needles (10.8 g .), m. p. 168° (Found: C, 83.8; H, $\overline{5} 3 . \quad \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2}$ requires $\mathrm{C}, 84 \cdot 4$; $\mathrm{H}, 5 \cdot 2 \%$), from ethanol.

3-A mino-9-m-aminophenylphenanthridine, prepared similarly to the foregoing compound, formed yellow prisms (63%), m. p. 201° (Found : C, $79.5 ; \mathrm{H}, 5 \cdot 1 . \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3}$ requires C, $80.0 ; \mathrm{H}, 5.3 \%$), from ethanol.

7-Amino-9-m-aminophenylphenanthridine, prepared similarly to the above compound, formed yellow prismatic needles (64%), m. p. 210° (Found: C, $79 \cdot 4 ; \mathrm{H}, 5 \cdot 2 . \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3}$ requires C, $80 \cdot 0$; $\mathrm{H}, \mathbf{5} \mathbf{3} \%$), from ethoxyethyl alcohol. The NN'-diacetyl derivative formed needles, $\mathrm{m} . \mathrm{p} .>290^{\circ}$ (Found : $\mathrm{C}, 74 \cdot 5 ; \mathrm{H}, 5 \cdot 0 ; \mathrm{N}, 11 \cdot 1 . \quad \mathrm{C}_{23} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}_{3}$ requires $\mathrm{C}, 75 \cdot 2 ; \mathrm{H}, 4 \cdot 7 ; \mathrm{N}, 11 \cdot 4 \%$), from alcohol.

5-Amino-9-phenylphenanthridine, prepared by ring closure of $2: 2^{\prime}$-dibenzamidodiphenyl (3 g .) with phosphorus oxychloride (6 g .) and nitrobenzene (9 ml .) at 160° for 2 hours, formed yellow prisms, m . p. 164° (Found: C, $84 \cdot 1 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}, 10 \cdot 4 . \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2}$ requires $\mathrm{C}, 84 \cdot 4 ; \mathrm{H}, 5 \cdot 2 ; \mathrm{N}, 10 \cdot 4 \%$), from aqueous ethanol. The monohydrochloride formed yellow needles, m. p. 335-338 (decomp.) (Found : C, 74.3; $\mathrm{H}, 4 \cdot 9 ; \mathrm{N}, 8 \cdot 6 . \quad \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2}, \mathrm{HCl}$ requires $\mathrm{C}, 74 \cdot 4 ; \mathrm{H}, 4 \cdot 9 ; \mathrm{N}, 9 \cdot 1 \%$), from aqueous alcohol.

9-p-Diacetylaminophenylphenanthridine.-9-p-Aminophenylphenanthridine (5 g .), acetic anhydride (50 ml .), and one drop of concentrated sulphuric acid were heated under reflux for 4 hours. Excess of acetic anhydride was removed under reduced pressure leaving 9-p-diacetylaminophenylphenanthridine, m. p. 207° (Found: C, $78 \cdot 4 ; \mathrm{H}, 5 \cdot 3 . \quad \mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}_{2}$ requires C, $77.9 ; \mathrm{H}, 5 \cdot 1 \%$) after crystallisation.

3-Diacetylamino-9-p-diacetylaminophenylphenanthridine crystallised from ethoxyethyl alcoholethanol (1:2) in needles, m. p. 221-222 ${ }^{\circ}$ (softening at 217°) (Found: $\mathrm{C}, 71 \cdot 0 ; \mathrm{H}, 5 \cdot 3 . \quad \mathrm{C}_{2} \mathrm{H}_{23} \mathrm{H}_{4} \mathrm{~N}_{3}$ requires $\mathrm{C}, 71 \cdot 5 ; \mathrm{H}, 5 \cdot 1 \%$).

7-Diacetylamino-9-p-diacetylaminophenylphenanthridine formed small prisms, $\mathrm{m} . \mathrm{p}$. 227-229 ${ }^{\circ}$ (Found: C, $71 \cdot 0 ; \mathrm{H}, 5 \cdot 1 . \quad \mathrm{C}_{27} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~N}_{3}$ requires $\mathrm{C}, 71 \cdot 5 ; \mathrm{H}, 5 \cdot 1 \%$), from aqueous ethanol.

3-Carbethoxyamino-9-methylphenanthridine, pale yellow prisms (3 g .) from benzene, m. p. 177-179 ${ }^{\circ}$ (Found: C, $72 \cdot 7 ; \mathrm{H}, 5 \cdot 8 . \quad \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}_{2}$ requires $\mathrm{C}, 72 \cdot 8 ;{ }^{\mathrm{H}}, 5 \cdot 8 \%$), was obtained by ring closure of 5 -carbethoxy-2-acetamidodiphenyl (5.0 g .) with phosphorus oxychloride (10 ml .) under reflux for 45 minutes.
$9-\mathrm{p}$-Hydroxyphenylphenanthridine.-9-p-Aminophenylphenanthridine (2.0 g .) in 2 N -sulphuric acid (20 ml .) was heated on the water-bath and then cooled to 0°. Sodium nitrite (0.8 g .), dissolved in a little water, was then added, and the diazotised solution poured into water (50 ml .) at 70°. After being kept overnight, the solids were collected, purified by solution in alkali, and crystallised from ethanol. $9-\mathrm{p}-$ Hydroxyphenylphenanthridine formed prismatic needles (1.4 g .), m. p. 237° (Found : C, 83.7; H, $4 \cdot 8$. $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ON}$ requires $\mathrm{C}, 84 \cdot 1 ; \mathrm{H}, 4 \cdot 8 \%$).

9-m-Hydroxyphenylphenanthridine, prepared similarly, formed buff-coloured microneedles, m. p. $225-226^{\circ}$ (Found : C, $83.7 ; \mathrm{H}, 4.8 . \quad \mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ON}$ requires $\mathrm{C}, 84 \cdot 1 ; \mathrm{H}, 4.8 \%$), from aqueous ethanol.

9-Morpholinomethylphenanthridine.-9-Chloromethylphenanthridine (6.3 g .), morpholine (8.5 g .), alcohol (25 ml .), and chloroform (5 ml .) were heated under reflux for 2 hours. Water was added, the mixture extracted with chloroform and concentrated to small bulk, and light petroleum added. 9 -Morpholinomethylphenanthridine separated and was obtained as yellow prisms, m. p. 95° (Found: $\mathrm{C}, 77.6 ; \mathrm{H}, 6.7 . \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ON}_{2}$ requires $\mathrm{C}, 77.7 ; \mathrm{H}, 6.5 \%$), from light petroleum.

9-(5-Nitro-2-furyl)phenanthridine, yellow needles, m. p. 187° (Found: $\mathrm{C}, 69 \cdot 6 ; \mathrm{H}, 3 \cdot 5 . \quad \mathrm{C}_{17} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~N}_{2}$ requires $\mathrm{C}, 70 \cdot 3 ; \mathrm{H}, 3 \cdot 5 \%$), from acetone, was obtained (36%) by heating 2 -(5 -nitro- 2 -furamido)diphenyl (5.0 g .) with phosphorus oxychloride (10 ml .) and nitrobenzene (15 ml .) for 30 minutes at 180°.

9-p-Diguanidophenylphenanthridine.- $9-p$-Aminophenylphenanthridine $(2.65 \mathrm{~g}$.$) , dicyandiamide$ (2.7 g.), water (15 c.c.), and hydrochloric acid (1 c.c.) were heated under reflux for 3 hours. The mixture was basified with ammonia, and the solid collected and crystallised from ethanol, from which it separated as needles (1.0 g .) (Found, in a sample dried at $100^{\circ} / 30 \mathrm{~mm}$.: C, $69 \cdot 2 ; \mathrm{H}, 5 \cdot 2 ; \mathrm{N}, 23 \cdot 0 . \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{6}, \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 69 \cdot 4 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}, 23 \cdot 1 \%$).

7-Diguanido-9-phenylphenanthridine monohydrate, similarly prepared, formed prismatic needles, m. p. 153° (decomp.) (Found: C, 68.0 ; $\mathrm{H}, 5 \cdot 7$; $\mathrm{N}, 22 \cdot 4$. $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{8}, \mathrm{H}_{2} \mathrm{O}$ requires C, 67.7 ; H, $5 \cdot 4$; $\mathrm{N}, \mathbf{2 2 . 5 \%} \%$, from alcohol. The picrate formed small yellow prisms, m. p. 235° (decomp.) (Found : N, $20.6 . \quad \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{6}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\mathrm{N}, 21.6 \%$), from ethoxyethyl alcohol.

'Table 111.

9-Substituted phenanthridines.

Reqd., \%.			Description.*
C.	H.	N.	
$89 \cdot 2$	$5 \cdot 6$	--	Prismatic needles ${ }^{\text {a }}$
$89 \cdot 2$	$5 \cdot 6$	-	Needles ${ }^{\text {a, }}$ (1)
$78 \cdot 7$	$4 \cdot 3$	--	Cream needles ${ }^{\text {b }}$
$78 \cdot 7$	$4 \cdot 3$	-.	Prisms ${ }^{\text {b }}$
78.7	$4 \cdot 3$	-	Silver needles ${ }^{\text {c }}$
$78 \cdot 7$	$4 \cdot 3$	\cdots	Silver needles ${ }^{\text {b }}$
76.0	$4 \cdot 0$	-	Pale yellow wispy needles ${ }^{d .}$ (2)
$80 \cdot 3$	$4 \cdot 7$	$8 \cdot 5$	Pale cream microneedles ${ }^{0,}$ (3)
$84 \cdot 2$	$5 \cdot 3$	$4 \cdot 9$	Needles f
$84 \cdot 2$	$5 \cdot 3$	-	Prisms ${ }^{\text {f }}$
$84 \cdot 2$	$5 \cdot 3$	\cdots	Necdles ${ }^{\prime}$
66.0	$3 \cdot 9$	-	Cubes ${ }^{\prime}$
$84 \cdot 2$	$5 \cdot 7$	4.7	Flat needles ${ }^{\prime}$
80.0	$5 \cdot 4$	---	Prisms ${ }^{\text {f }}$
$80 \cdot 0$	$5 \cdot 4$	-	Prismatic needles ${ }^{f}$
$80 \cdot 4$	4.4	$4 \cdot 7$	Needles ${ }^{\prime}$
-	-	4.5	Cream needles ${ }^{\prime}$
$90 \cdot 3$	$6 \cdot 1$	-	Needles ${ }^{f}$
	-	$4 \cdot 3$	Needles ${ }^{\prime}$
$80 \cdot 4$	$6 \cdot 2$	-	Needles f
$80 \cdot 4$	$6 \cdot 2$	-	Needles ${ }^{\prime}$
$84 \cdot 4$	$4 \cdot 7$	-	Prismatic needles ${ }^{0,(4)}$
$65 \cdot 7$	$4 \cdot 3$	\cdots	Yellow prisms ${ }^{f}$
87.9	$4 \cdot 7$	-	Pale cream prisms ${ }^{f}$, (5)
$78 \cdot 7$	$4 \cdot 0$	-	Small needles ${ }^{\text {d, }}$ (5)
78.7	$4 \cdot 0$	-	Pale yellow needles ${ }^{d,(6)}$
81.6	3.9	$5 \cdot 3$	Leaflets ${ }^{\text {a }}$
escribe		Itern	ive preparation from

$128-129$
160
235
(decomp.)

р-Methoxyphenyl-

,: 4'-Dimethoxyphenyl-

10 No
No
N
phenanthridine and tolyl-lithium.
Periods of refluxing: (2) 16 hours, (3) $3 \frac{1}{2}$ hours, (4) 16 hours, (5) 18 hours

(1) Since completion of this prep

Phenanthridine $10-$ Oxide.-Phenanthridine (18.1 g .), dissolved in a little chloroform, was added to ethereal perphthalic acid solution ($\equiv 2.1 \mathrm{~g}$. of active oxygen). After five days at 5° the solids were collected, ground with aqueous 5% ammonium hydroxide, and crystallised from ethanol (87%). Phenanthridine 10 -oxide formed (after drying at $100^{\circ} / 20 \mathrm{~mm}$.) leaflets, m. p. 220° (softening at 215°) (Found: C, $79.5 ; \mathrm{H}, 4 \cdot 6 . \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ON}$ requires $\mathrm{C}, 80 \cdot 0 ; \mathrm{H}, 4 \cdot 7 \%$).

9-Methylphenanthridine 10 -oxide hydrochloride was obtained (89%) in small buff prisms, m. p. $190-192^{\circ}$ (decomp.; after drying) (Found: C, 68.1; H, 4.8. $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ONCl}$ requires $\mathrm{C}, 68 \cdot 4 ; \mathrm{H}, 4.9 \%$).

9-Ethylphenanthridine 10 -oxide monohydrate separated from aqueous acetic acid in pale pink needles, m. p. 252-253 ${ }^{\circ}$ (decomp.) (Found: C, 73.9; H, 6.3. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ON}, \mathrm{H}_{2} \mathrm{O}$ requires C, 74.6; H, 6.3\%).

9-Phenylphenanthridine $10-$ Oxide.-To a peracetic acid solution, prepared by heating 30% hydrogen peroxide (30 g .) and glacial acetic acid (50 g .) at 85° for one hour, was added 9 -phenylphenanthridine ($5 \cdot 0 \mathrm{~g}$.), and heating at 85° continued for a further 4-5 hours. The mixture was then poured into water, and the precipitated solids were collected and crystallised from chloroform. 9-Phenylphenanthridine 10 -oxide was obtained (91%) in glistening buff leaflets, m. p. 212-215 ${ }^{\circ}$ (Found: C, 84.4; H, $5 \cdot 0 . \mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ON}$ requires $\mathrm{C}, 84 \cdot 1 ; \mathrm{H}, 4 \cdot 8 \%$).

The compounds listed in Table IV were thus prepared.
$9-\mathrm{p}-$ Aminophenylphenanthridine $10-$ Oxide.-Finely powdered $9-p$-nitrophenylphenanthridine 10 -oxide $(4.9 \mathrm{~g}$.) was stirred with hydrochloric acid (25 ml .) on a steam-bath, a few drops of ethanol being added to prevent frothing. Stannous chloride (14 g .) in hydrochloric acid (15 ml .) was then added; the suspended solids dissolved and were replaced, after 30 minutes' heating, by yellow crystals. After cooling to 5° the separated stannichloride was collected and decomposed with 10% aqueous sodium hydroxide, and the liberated base crystallised from ethanol. 9-p-Aminophenylphenanthridine 10 -oxide monohydrate separated (40%) in yellow needles, m. p. 264- 265° (decomp.) (Found: C, $75 \cdot 2$; H, $5 \cdot 3$. $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ON}_{2}, \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 5.3 \%$). The product is readily soluble in dilute acid and gives a positive primary amine test on diazotisation and coupling with alkaline 2 -naphthol. For analysis the compound was dried at room temperature, as appreciable decomposition occurs at 100°.

9-m-Aminophenylphenanthridine 10 -oxide hemihydrate formed yellow needles, m. p. 124-125 (decomp.) (Found : C, $77 \cdot 8 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{N}, 9.0 . \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ON}_{2}, \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 77 \cdot 3 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{N}, 9.5 \%$), from ethanol.

3-Amino-9-methylphenanthridine 10 -oxide hemihydrate was obtained (42%) in wispy yellow needles, $\mathrm{m} . \mathrm{p} .214^{\circ}$ (Found : C, $72 \cdot 3 ; \mathrm{H}, 5 \cdot 6 . \quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ON}_{2}, \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 72 \cdot 1 ; \mathrm{H}, 5 \cdot 6 \%$), from aqueous alcohol. 3-A mino-9-phenylphenanthridine 10 -oxide monohydrate formed yellow needles (54%), m. p. 248° (decomp.) (Found : C, $75 \cdot 5$; $\mathrm{H}, 5 \cdot 4 . \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ON}_{2}, \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}, 5.3 \%$), from ethanol.

7-Amino-9-phenylphenanthridine 10 -oxide separated (46%) in yellow needles, m. p. 278° (decomp.) (Found: C, $78.8 ; \mathrm{H}, 5 \cdot 3 . \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ON}_{2}, \frac{1}{4} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 78 \cdot 6 ; \mathrm{H}, 5 \cdot 0 \%$), from ethanol.

3-Diacetylamino-9-p-diacetylaminophenylphenanthridine 10 -oxide hemihydrate, obtained in very low yield, separated from alcohol as an amorphous yellow powder, m. p. 268° (decomp., preheated bath) (Found : $\mathrm{C}, 67.7 ; \mathrm{H}, 4.8 . \mathrm{C}_{27} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~N}_{3}, \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 67.8 ; \mathrm{H}, 5.1 \%$).

9-4'-Pyridylphenanthridine 1^{\prime}-Oxide.-The corresponding base was treated with $1 \cdot 1$ equivs. of perphthalic acid solution. After fractional crystallisation to remove unchanged material, the 1^{\prime}-oxide was obtained in prismatic needles, m. p. 266° (Found : $\mathrm{C}, 79 \cdot 4 ; \mathrm{H}, \mathbf{4} \cdot 6 ; \mathrm{N}, \mathbf{1 0 \cdot 0} . \mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ON}_{2}$ requires $\mathrm{C}, 79.4 ; \mathrm{H}, 4.4 ; \mathrm{N}, 10.3 \%$), from aqueous ethanol.

9-4'-Pyridylphenanthridine $10: 1^{\prime}$-dioxide, colourless prisms (71%), m. p. 303° (decomp.) (Found : C, $75 \cdot 3 ; \mathrm{H}, 4 \cdot 2 . \quad \mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}_{2}$ requires $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 4 \cdot 2 \%$), from ethoxyethyl alcohol, was similarly obtained by using $3 \cdot 3$ equivs. of perphthalic acid.

Quaternary Salts.-The base was heated with methyl sulphate for 10 minutes in nitrobenzene at 160°. The methosulphate was isolated either by direct filtration or by removal of the nitrobenzene by steamdistillation followed by concentration under reduced pressure. The compounds listed in Table V were thus prepared.

3-Amino-9-(2-phenyl-4-quinolyl)phenanthridine Dimethiodide.-3-Nitro-9-(2-phenyl-4-quinolyl)phenanthridine dimethosulphate (1.0 g .), dissolved in concentrated hydrochloric acid (5 ml.), was treated with stannous chloride (3 g .) in hydrochloric acid (4 ml .) for 2 hours on the water-bath. After cooling, the orange-red stannichloride was collected and decomposed with hydrogen sulphide in dilute hydrochloric acid solution. The resulting dimethochloride proved very hygroscopic. The dimethiodide was therefore prepared, and formed orange-red needles (0.9 g), m. p. 228° (decomp.) (Found: C, 51.5 ; H, 4.2. $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{I}_{2}, \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 51 \cdot 5 ; \mathrm{H}, 3.9 \%$), from aqueous ethanol.
$2: 3$-Di-2'-furylquinoxaline.-Furil (9.5 g.), in hot ethanol (100 ml .) and chloroform (70 ml .), was heated with o-phenylenediamine (5.4 g .) in ethanol (10 ml .) under reflux for 30 minutes. Concentration gave $2: 3$-di-2'-furylquinoxaline, yellow needles (12.6 g .), m. p. $130-131^{\circ}$ (Found : C, $73 \cdot 0$; H, $3 \cdot 4$. $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}_{2}$ requires $\mathrm{C}, 73 \cdot 3 ; \mathrm{H}, 3.8 \%$). Attempts to convert this compound into the N-oxide gave only $2: 3$-dihydroxyquinoxaline, white needles, m. p. $>300^{\circ}$ (Found: $\mathrm{C}, 59 \cdot 0 ; \mathrm{H}, 3 \cdot 7$. Calc. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~N}_{2}$: C, $59 \cdot 3 ; \mathrm{H}, \mathbf{3 . 7 \%}$), from water. Attempts to prepare quaternary salt were likewise unsuccessful.

2:3-Dimethylquinoline-4-carboxylic acid 1-oxide, prepared by using peracetic acid, formed glistening leaflets (25%), m. p. 229° (decomp.) (Found: C, 66.2; H, 5•1. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}$ requires C, $66 \cdot 3$; H, $5 \cdot 1 \%$), from ethanol.

2-Phenylquinoline-4-carboxylic acid 1-oxide, prepared similarly, formed pale yellow prisms (75\%), m. p. 260° (decomp.) (Found : C, $71 \cdot 7 ; \mathrm{H}, 4 \cdot 3 . \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}$ requires $\mathrm{C}, 72 \cdot 4 ; \mathrm{H}, 4 \cdot 2 \%$).
$2-M e t h y l-5: 6$-benzquinoline 1 -oxide, prepared by treating 2 -methyl-5:6-benzquinoline (10 g .) in glacial acetic acid (200 ml .) with hydrogen peroxide (50 ml . of 30%) at 50° for 24 hours, was obtained as the monohydrate, m. p. 87-89 ${ }^{\circ}$, from which the oxide was obtained after drying, m. p. 128-129 (Found : C, $80.0 ; \mathrm{H}, 5 \cdot 8 ; \mathrm{N}, 6.7 . \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ON}$ requires $\mathrm{C}, 80.4 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}, 6.7 \%$).

The Action of Phosphorus Oxychloride on Some Phenanthridine N-Oxides.-Phenanthridine 10-oxide. The oxide (1.0 g .), in a flask cooled in ice-water was treated with phosphorus oxychloride (4.0 ml .) added dropwise with shaking. The mixture was then heated on the water-bath for 15 minutes, poured on

$$
P h
$$

Table IV.
Phenanthridine 10 -oxides.

$\begin{array}{cc} & \text { Yield, } \\ \text { M. p. } & \% \text {. } \\ 196-197^{\circ} & 50 \\ 200 & 91 \\ 252 & 68 \\ \text { (decomp.) } & \\ 174-175 & 74 \\ 218 & 66 \\ 181 & 63 \\ 242-245 & 87 \\ \text { (decomp.) } & \\ 231 & 47 \\ 269-271 & 68 \\ \text { (decomp.) } & \\ 286 & 26 \\ >265 & 96 \\ 232-234 & 50 \\ \text { (decomp.) } & \end{array}$

* Recrystallised from : ${ }^{a}$ ethyl acetate, ${ }^{b}$ aq. ethanol
Substituent.

$$
\begin{aligned}
& \begin{array}{l}
\text { 3-Nitro-9-methyl- } \\
\text { 9-p-Methoxyphenyl- }
\end{array}
\end{aligned}
$$

Phenanthri

(decomp.)
\qquad

* M.I. $=$ methiodide $;$ M.S. $=$ methosulphate.
acid ${ }^{\circ}$ ethanol, ${ }^{d}$ acetic acid. - Λ giavI Yield,
M. p.
$191-192^{\circ}$
$219-221$
(decomp.)
$207-208$

$191-192$
210
(decomp.)
$206-207$
(decomp.)
195
(decomp.)
$171-174$
(decomp.)
>290
230
(decomp.)
260
(decomp.)
$254-255$
(decomp.)

$$
\text { * } \ddagger \text { uən } \ddagger!̣ \text { sqns }
$$
 9-p-Tolyl- M.S. 9-p-Tolyl- M.I.

 Substituent.*

 Substituent.*}
9-o-Chlorophenyl- M.I.

9-p-Chlorophenyl- M.S. -(5-Nitro-2-furyl)-M.

9-Morpholinomethyl- M.S.

 7-Nitro-9-(2-phenyl-4-quinolyl)-di-M.S. -

[^0]70
elnanoi, aqueous elnano
ice, and neutralised with sodium hydroxide. The product in light petroleum (50 ml . of b. p. $80-100^{\circ}$; charcoal) deposited a little phenanthridone on storage overnight; this was removed, and the filtrate chilled to -30°. 9 -Chlorophenanthridine separated, needles (0.95 g .), m. p. 116.5° (Found: C, $73 \cdot 1$; $\mathrm{H}, 3.8$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{NCl}: \mathrm{C}, 73.1 ; \mathrm{H}, \mathbf{3 . 8} \%$), from light petroleum, not depressed in admixture with an authentic specimen.

9 -Chlorophenanthridine (10 g .) in alcohol (50 ml .) was added to a solution of sodium (1.2 g .) in alcohol $(50 \mathrm{ml}$.$) , and the mixture heated under reflux for 3$ hours. The product, in light petroleum, was purified by passage through a column of alumina, giving 9 -ethoxyphenanthridine, needles (2.5 g .) , m. p. 60° (Found: C, 80.5 ; H, 6.4. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ON}$ requires $\mathrm{C}, 80.7$; H, 5.9), from methanol. On reaction with peracetic acid it was converted into phenanthridone.

9-Phenylphenanthridine 10 -oxide. The oxide (2.0 g .) in a flask cooled in ice-water, was treated dropwise with phosphorus oxychloride (8 ml .). When the vigorous reaction had subsided the mixture was heated on the water-bath for $1 \frac{1}{2}$ hours, and the product isolated as before. Repeated crystallisation from methanol gave 3-chloro-9-phenylphenanthridine, m. p. 141° (Found: C, 79.0; H, 4.2. Calc. for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{NCl}: \mathrm{C}, 78.7 ; \mathrm{H}, 4.3 \%$), not depressed in admixture with an authentic specimen.

9 -Methylphenanthridine 10 -oxide. The oxide hydrochloride (2.0 g .) was treated with phosphorus oxychloride (8 ml .) as before, and the mixture heated on the water-bath for 45 minutes. After decomposition with ice and basification with ammonia, the product was fractionated from ethanol, giving 9 -chloromethylphenanthridine, m. p. 132° (Found : $\mathrm{C}, 74 \cdot 2 ; \mathrm{H}, 4 \cdot 6$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{NCl}$: C, $73.8 ; \mathrm{H}, 4.4 \%$), not depressed in admixture with an authentic specimen. The mother-liquors yielded (? 3-)chloro-9-methylphenanthridine, small needles, m. p. $91 \cdot 5-92.5^{\circ}$ (Found: C, $73 \cdot 3 ; \mathrm{H}, 4 \cdot 6 \%$), from light petroleum.

The authors thank the Directors of The British Drug Houses Ltd. for permission to publish these results.

Chemical Research Laboratories,
The British Drug Houses Ltd., London, N.l.
[Received, December 5th, 1949.]

[^0]: 9-4'-Pyridyl-M.I.
 9-(2-Phenyl-4-quinolyl)-di-M.S.
 3-Nitro-9-(2-phenyl-4-quinolyl)- di-M.S.

